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ABSTRACT
The paper outlines a set of software tools allowing injection
locking to be quantitatively treated by harmonic-balance
methodology, and discusses in detail the stability portrait of a
typical injection locked microwave oscillator. The simulation
can accurately describe the spreading of the unlocked oscillation
spectrum near the locking range edge.

INTRODUCTION

The understanding of injection locking is still widely based
on classic simplified treatments such as the Kurokawa approach
[1] or the descriptive function method [2]. Although these
techniques do provide a good intuition of the basic
phenomenon, they rely upon drastic approximations such as
neglecting the effects of harmonics, and on schematic
descriptions of the active devices which are usually inadequate
and difficult to derive. They are thus not compatible with the
modern nonlinear CAD approach, requiring full consideration
of the signal spectra, sophisticated device models, and a
realistic description of the entire circuit topology. In recent
years, the harmonic-balance (HB) technique has gained
widespread acceptance as a numerical tool for the steady-state
analysis of broad classes of nonlinear microwave circuits.
Recent developments of this technique have extended its
capabilities to cover local [3] and global [4, 5] stability analysis,
the search for bifurcations of parametrized circuits [5], and the
ability to deal with quasi-periodic (multitone) electrical regimes
of autonomous circuits [6,]. In this paper we show that these
new capabilities allow the injection locking problem to be
investi-gated in depth by HB methodology. The advantage of
harmonic balance with respect to the classic approaches [1, 2] is
that it is rigorous and straightforward, and completely fulfills
the requirements of a general-purpose CAD environment for
high-frequency applications. The advantage of HB over time-
domain nonlinear simulation lies in its much higher
computational speed, allowing the efficient derivation of
extensive stability portraits. Producing similar results in the
time domain would be a formidable task requiring the execution
of computer jobs of overwhelming numerical size.

The next section presents a synthetic discussion of the
fundamental software tools that are required for a detailed
frequency-domain analysis of injection locking, and of their
implementation in a harmonic-balance environment. The last
section describes an illustrative example, showing the kind of
information that can be derived by harmonic-balance analysis.

BASIC SOFTWARE TOOLS
A numerical analysis of the injection locking phenomenon in
the frequency domain requires the execution (in various
combinations) of the following four fundamental operations:
i) The analysis of a microwave oscillator operating in a
periodic or gquasi-periodic steady state, with one or two
unknown fundamental frequencies.
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ii) The computation of a solution path in the state space for a
parametrized oscillator.

iii) The detection of bifurcations on a known solution path.

iv) The local stability analysis of a periodic steady state.
A number of recent developments of the basic harmonic-balance
technique have led to the efficient implementation of all the
above capabilities in a homogeneous set of software tools.
In this section we present a quick review of the related
methodologies.

i) An injection-locked oscillator is a self-oscillating circuit
forced by an external sinusoidal source. From the physical
viewpoint, the system response to this excitation can exhibit
two qualitative portraits. If the power/frequency combination of
the forcing signal is such that stable locking takes place, the
response is a time-periodic regime with a fundamental equal to
the injected frequency, and can be found by a conventional
forced circuit analysis under single-tone excitation. Otherwise,
the response is quasi-periodic, with one unknown fundamental
frequency, since the free oscillation is perturbed by the injection
of the forcing signal. In this case the circuit can be solved by a
"mixed-mode" Newton iteration [6], A phase reference is
arbitrarily established for the free (unknown) fundamental by
setting to zero the imaginary part of a suitable harmonic. Then
the system is solved with a hybrid vector of unknowns
containing the reduced set of state-variable (SV) harmonics and
the unknown fundamental. In certain special circumstances, the
same kind of analysis has to be carried out with both
fundamental frequencies treated as unknowns (e.g., in the
vicinity of a turning point of the solution path for the quasi-
periodic solution), in order to avoid the singularity of the
Jacobian (see point ii) below). From the numerical viewpoint, it
is worth noting that a harmonic-balance analysis is always
carried out with a predefined spectrum. If this spectrum only
contains harmonics of the injected frequency, the numerical
result will be a time-periodic regime even outside the stable
locking range. Of course, this "locked” regime is unstable and
cannot exist in reality, but this can only be established by the
stability analysis tools discussed at points iii) and iv) below.

ii) In principle, the derivation of a solution path for a
parametrized oscillator is only a matter of repeatedly applying
the analysis algorithm. In this respect the Newton iteration
represents an ideal choice, since a starting point relatively close
to the solution is always available, so that its high rate of
convergence in the vicinity of the solution can be fully
exploited. For the first point of the curve a systematic startup
procedure is available [7]. The only aspect requiring additional
consideration is the occurrence of turning points in the solution
path, such as points T}, T, in fig. 2. At a turning point the
Jacobian is singular [8], so that the Newton-iteration based HB
analysis in its conventional formulation is unable to reach it [9].
In our program, this difficulty has been overcome by a novel
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implementation of the "switching-parameter” concept originally
devised by Chua and Ushida for finding multiple solutions of
resistive circuits [9]. In the study of injection locking, the free
parameter is usually chosen as the injected frequency, as in
figs. 1 - 3. Along a branch of the solution path encompassing a
turning point, the roles of the reference harmonic (in this case,
the fundamental of the drain voltage) and of the injected
frequency are interchanged. This means that the former is
treated as the independent parameter, and the latter as an
unknown to be determined by the HB analysis. The switching
criterion is based on the condition number of the conventional
Jacobian, which is evaluated at each point of the curve after
completing the HB analysis. The switching is automatically
activated when the condition number raises above a prescribed
threshold (10%in the present implementation), and is
suppressed when it drops below threshold. When a turning
point occurs in the solution path of a quasi-periodic regime
(e.g., points Ts, Tgin fig. 3), in the switched range the HB
analysis must determine two unknown fundamental
frequencies.

iii) In our implementation of the piecewise harmonic-balance
technique, the nonlinear subnetwork is described by the
generalized parametric equations [5]

v(t)=u[x(t) ,%, -""%ETX’ xD(t)]

i(t)=W[x(t) ,%—1’5, ....,%, xD(t)]

where v(t), i(t) are vectors of voltages and currents at the
common ports, x(t) is a vector of state variables, and xp(t) a

vector of time-delayed state variables, i.e., xp;(t) = x;(t - ).
The advantages of this kind of representation are discussed
elsewhere [5].

Let us now assume that a periodic or quasi-periodic solution
of the circuit equations is perturbed by a superimposed

sinusoidal signal of angular frequency . If the perturbation is
small enough, it can be studied by linearizing the nonlinear
subnetwork equations (1) in the neighborhood of the
unperturbed steady state. This implies that the perturbed steady
state may be represented as a quasi-periodic regime containing
only intermodulation (IM) products of first order with respect to
the perturbation (sidebands). A generic signal supported by the
circuit thus takes the form

a(t) = ag() + 3, AAgexp[i(w + Q1] e}
k

where ay(t) is the unperturbed steady state, and the € are the
spectral lines of such steady state. Due to the linearization, the
phasors of the voltage and current harmonics at the sidebands
are linearly related by the conversion equations of the nonlinear
subnetwork. If the nonlinear devices are described by the
parametric equations (1), the conversion equations are also
expressed in parametric form as follows [5]

AV =P AX
€))
AX = Q AX

Specifically, eqn. (3) are linear maps between the spectra of the
perturbations on voltages (AV), currents (Al), and state
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variables (AX). The corresponding linear operators P, Q are
the conversion matrices of the nonlinear subnetwork.

Now let the nonlinear circuit be parametrized by an arbitrary
physical quantity p on which the circuit equations are
continuously dependent. Typical choices of p for injection
locking analysis are the frequency or the available power of the
locking signal. Let X be the state vector, i.e., the set of real and
imaginary parts of the state-variable harmonics. The parameter-
dependent solution X(p) of the HB equations defines the
solution path in the state space. A point X(pg) of the solution
path is a bifurcation if the real part of one (or more) natural
frequencies of the steady state changes sign at p = pg [8]. An
equation for the bifurcations of a given solution path can easily

be formulated in the frequency domain. Let Sy (jo) be a block-
diagonal matrix whose diagonal blocks consist of the scattering
matrix of the linear subnetwork evaluated at the sidebands.
Then at a bifurcation we have [4]

Aljwg, X(pp), ppl =det [(1-SP- (1 +S)Q1=0 (@)

where pg is the bifurcation value of the parameter, and jwg is
the natural frequency at the bifurcation (which, by definition, is
purely imaginary).

Two kinds of bifurcations are primarily of interest in the
analysis of injection locking, namely, the Hopf bifurcation and
the regular turning point. At a Hopf bifurcation the real parts of
two complex conjugate natural frequencies change sign, so that
a free oscillation starts up (or dies out) when the bifurcation is
crossed along the solution path. From the conceptual
viewpoint, a Hopf bifurcation can be found on a known
solution path X(p) by solving (4) as a system of two real

equations in two real unknowns ®g, pg. From the numerical
viewpoint, the computation of the left-hand side of (4) with

given values of wg, pg is carried out as follows. The block

scattering matrix Sy (jeop) is obtained from a linear subnetwork
analysis. The state vector X(pg) is found by solving the HB
equations in the way discussed at point i) above. The associated
conversion matrices P, Q are then computed by the general
algorithm discussed in [5].

A regular turning point is a regular point of the solution path
where the parameter reaches a relative maximum or minimum
[8]. At a turning point one real natural frequency of the steady
state changes sign, which implies that the Jacobian matrix J of
the harmonic-balance system has a zero eigenvalue, and is thus
singular [8]. Thus the exact location of a turning point may be
found on a known solution path X(p) by solving the real
equation

det {J[X(pp), pal} =0 (5)

for the real unknown pg. Note that good starting values are
usually available for the solutions of both (4) and (5), since the
approximate locations of the bifurcations can be obtained by
inspection of the solution path.

iv) The exchanges of stability among the branches of the
solution path originating from a bifurcation are defined by the
mathematical theory of bifurcations [10]. Thus in principle,
after all bifurcations have been located, the entire stability
portrait can be defined by the local stability analysis of one
arbitrarily selected point of the solution path. If this point is
chosen as a periodic steady state, the stability analysis can be
performed by numerically computing a Nyquist stability plot
[3], i.e., by plotting on the complex plane the left-hand side of

(4) (with wg, pg replaced by , p) as a function of ®. In this



case A is a periodic function of @ whose period is equal to the
fundamental C of the steady state [3]. Thus the entire Nyquist
diagram is obtained by cosidering only the finite range 0 < @ <

Q. If the selected point is not a bifurcation, the origin of the
complex plane does not belong to the plot because (4) is not
satisfied, so that the number of encirclements of the origin is
directly related to the number of unstable natural frequencies
[3]. In practical applications, several local stability analyses are
carried out as a matter of course, in order to double-check the
accuracy of the global stability picture.

INJECTION LOCKING ANALYSIS VIA
HARMONIC BALANCE
A microwave oscillator topology suitable for injection
locking is the two-port configuration discussed in ref. [11]. Our
purpose here is not to achieve a specific design, but rather to
discuss the application of HB methodology to a typical system.
We thus simply consider a circuit of this kind designed as a
free-running oscillator by numerical optimization [12]. The

design goal is an output power of +14 dBm at Wy = 2w * 6
GHz, and no attempt is made to optimize the locking
bandwidth. The use of stub matching networks results in an
effective Q [1] of about 15.

Now let the oscillator be forced by a sinusoidal signal of

available power Py, and angular frequency ;. Figs. 1, 2, and
3 show the stability portraits obtained when the locking
frequency is used as the independent parameter at three different
power levels of the injected signal.

A stability portrait of the kind shown in fig. 1 is obtained for
relatively high values of injected power (approximately Py, >
+1.8 dBm for the circuit under consideration). Fig. 1 is drawn
for Py, = +3 dBm. The figure shows the two-dimensional
projection of the solution path of the harmonic-balance

equations in the parameter range 5.5 GHz < /2 < 6.5 GHz.
The branch AH;H,B represents the time-periodic solution of

fundamental frequency @, i.c., the locked regime. Any state of
this branch lying between H; and H, can be shown to be stable
by a local stability analysis based on the Nyquist method (point
iv) of the previous section). In the HB analysis of the locked
regime, four harmonics of the input frequency (including the
fundamental) are taken into account. For the sake of graphical
representation, the output power at the locking frequency is
used as a quantity representative of the system state along the
branch AH;H,B. Two Hopf bifurcations H,, H,, are
encountered on this branch. H, is supercritical [8] in the
decreasing parameter sense, while H, is supercritical in the
increasing parameter sense. Thus, according to the results of
bifurcation theory [8, 10] each of the states belonging to the
branches AH; and H,;B has two complex conjugate natural
frequencies with positive real parts, and is therefore unstable.
Stable locking thus takes place only along the branch HyH,, so
that the stable locking range is given by the frequency distance
between the two Hopf bifurcations. Below H, and above H,
the solution path has two branches: the already mentioned
branch representing an unstable locked regime (AH,; and H,B,
respectively), and a further branch representing a stable quasi-
periodic regime. On this branch the oscillator is unlocked, so
that a free oscillation with a fundamental frequency @, # g
coexists and intermodulates with the injected signal. This
branch is represented in fig. 1 by two curves, which are
generated by two different projections (orthogonal and paraliel
to the hyperplane of the harmonics of ®,) of the branch itself on
the figure plane. Thus the couples of points C/C', Hy/H,',
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H,/H,', D/D' are the images of the same four points of the
solution path created by the two projections (note that H,', Hy'
fall outside the power range spanned by the ordinate of fig. 1).
On the branches CH,; and H,D (obtained from the orthogonal
projection), the quantity used as representative of the system

state is still the output power at ®,. On the branches C'H,' and
H,'D' (obtained from the parallel projection), it is the output

power at ,.

In an intermediate range of input power values
(approximately -2.21 dBm < P;, < +1.8 dBm for the circuit
under consideration), the projection of the solution path takes
the shape given in fig. 2. Fig. 2 is drawn for P, = -1 dBm in

the parameter range 5.8 GHz < /2% < 6.2 GHz. One evident
difference with respect to fig. 1 is the occurrence of turning
points in the solution path. Every state belonging to the
branches T, T, and T5T, has one positive real natural frequency
and is thus unstable [8]. The Hopf bifurcations lie between the
turning points T, T, and T3, T4, respectively. The states
belonging to H; T, and T3H, are therefore unstable, so that the
bounds of the stable locking range are now represented by the
turning points T,, T3. The oscillator exhibits two small
hysteresis cycles at the locking band edges.

For a critical value of the input power (P, = -2.21 dBm for
the circuit under consideration), the turning points Ty, Ty
merge, and the solution path exhibits a double point. Below this
value, the projection of the solution path takes the shape given
in fig. 3 (the figure is actually drawn for P;;, = -3 dBm). The
locked regimes are now represented by two disjoint branches
AB and OH;H,O. All the periodic states belonging to the
branch AB have two complex conjugate natural frequencies
with positive real parts and are thus unstable. The Hopf
bifurcations H;, H; now lie between the turning points T, Ts.
Each state belonging to the branches T,H; and H,T} is thus
unstable because of a couple of complex conjugate natural
frequencies having positive real parts. Stable locking therefore
takes place only on the branch H;H,. H; is a subcritical Hopf
bifurcation [8] in the decreasing parameter sense, while H, is
subcritical in the increasing parameter sense. Thus the quasi-
periodic bifurcated branches are unstable in the vicinity of the
Hopf bifurcations because of one positive real natural
frequency. These natural frequencies change sign at the turning
points Ts, Ty, so that the quasi-periodic branches CTs/C'Ts'
and T¢D/T¢'D’ are stable. The oscillator exhibits two hysteresis
cycles near the locking band edges. .

In the HB analysis of the quasi-periodic steady states far
enough from the Hopf bifurcations, all IM products of the two
fundamentals up to the fourth order are taken into account.
However, as the locking band edges are approached, the
spectrum quickly spreads out, and at the same time the

fundamental , of the free-running oscillation approaches the

locking frequency ;. Thus the number of spectral lines to be
considered in the harmonic-balance simulation becomes larger
and larger. An example of this behavior is given in fig. 4,
where the near-carrier portion of the load power spectrum is
plotted for a quasi-periodic regime corresponding to point E/E’
in fig. 3. This spectrum is produced by an HB analysis
accounting for IM products up to the 13th order. The injected
frequency is 5.94499 GHz, and the free-running fundamental is
found to be 5.97469 GHz. Fig. 4 exibits the typical near-
triangular spectrum of the unlocked oscillation, with most of the

spectral lines crowded on the oy side of the injected frequency.
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